Data integration through canonical correlation analysis and its application to OMICs research

J Biomed Inform. 2024 Mar:151:104575. doi: 10.1016/j.jbi.2023.104575. Epub 2023 Dec 10.

Abstract

The subject of the paper is a review of multidimensional data analysis methods, which is the canonical analysis with its various variants and its use in omics data research. The dynamic development of high-throughput methods, and with them the availability of large and constantly growing data resources, forces the development of new analytical approaches that allow the review of the analyzed processes, taking into account data from various levels of the organization of living organisms. The multidimensional perspective allows for the assessment of the analyzed phenomenon in a more realistic way, as it generally takes into account much more data (including OMICs data). Without omitting the complexity of an organism, the method simplifies the multidimensional view, finally giving the result so that the researcher can draw practical conclusions. This is particularly important in medical sciences, where the study of pathological processes is usually aimed at developing treatment regimens. One of the primary methods for studying biomedical processes in a multidimensional approach is the canonical correlation analysis (CCA) with various variants. The use of CCA unique methodologies for simultaneous analysis of multiset biomolecular data opens up new avenues for studying previously undiscovered processes and interdependencies such as e.g. in the tumor microenvironment (TME) connected to intercellular communication. Because of the huge and still untapped potential of canonical correlation, in this review available implementations of CCA techniques are presented. In particular, the possibility of using the technique of canonical correlation analysis for OMICs data is emphasized.

Keywords: Bioinformatics; Biomarkers; Cancer; Canonical correlation analysis; Omics.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Canonical Correlation Analysis*