Multi-exposure diffraction pattern fusion applied to enable wider-angle transmission Kikuchi diffraction with direct electron detectors

Ultramicroscopy. 2024 Mar:257:113902. doi: 10.1016/j.ultramic.2023.113902. Epub 2023 Dec 7.

Abstract

Diffraction pattern analysis can be used to reveal the crystalline structure of materials, and this information is used to nano- and micro-structure of advanced engineering materials that enable modern life. For nano-structured materials typically diffraction pattern analysis is performed in the transmission electron microscope (TEM) and TEM diffraction patterns typically have a limited angular range (less than a few degrees) due to the long camera length, and this requires analysis of multiple patterns to probe a unit cell. As a different approach, wide angle Kikuchi patterns can be captured using an on-axis detector in the scanning electron microscope (SEM) with a shorter camera length. These 'transmission Kikuchi diffraction' (TKD) patterns present a direct projection of the unit cell and can be routinely analysed using EBSD-based methods and dynamical diffraction theory. In the present work, we enhance this analysis significantly and present a multi-exposure diffraction pattern fusion method that increases the dynamic range of the detected patterns captured with a Timepix3-based direct electron detector (DED). This method uses an easy-to-apply exposure fusion routine to collect data and extend the dynamic range, as well as normalise the intensity distribution within these very wide (>95°) angle patterns. The potential of this method is demonstrated with full diffraction sphere reprojection and highlight potential of the approach to rapidly probe the structure of nano-structured materials in the scanning electron microscope.

Keywords: Direct electron detection; Exposure fusion; High dynamic range; Transmission Kikuchi diffraction.