Nonlinear Optical Spectroscopy of Molecular Assemblies: What Is Gained and Lost in Action Detection?

J Phys Chem Lett. 2023 Dec 21;14(50):11438-11446. doi: 10.1021/acs.jpclett.3c02824. Epub 2023 Dec 12.

Abstract

This study elucidates the information content that is extracted from action-2D electronic spectroscopy (A-2DES) when the output intensity is not proportional to the number of excitations generated. Such a scenario can be realized in both fluorescence and photocurrent detection because of direct interaction like exciton-exciton annihilation or indirect effects in the signal generation or detection. By means of an intuitive probabilistic model supported by nonlinear response theory, the study concludes that in molecular assemblies the ground-state bleaching contribution can dominate the nonlinear signal and partially or completely hide the stimulated emission. In this case, the spectral effect resembles incoherent mixing, even in the absence of exciton-exciton annihilation, implying reduced information about the excited-state dynamics with an increasing number of chromophores. This finding has important implications for the selection of samples for A-2DES as well as for its interpretation.