Brain Connectome Imaging Markers Research of Glucose Metabolism in the Early Stage of Alzheimer's Disease

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-4. doi: 10.1109/EMBC40787.2023.10340657.

Abstract

In recent years, increasing evidence had suggested that subjective cognitive decline (SCD) in unimpaired individuals may be the first symptom of Alzheimer's disease (AD). This study investigated the differences in the glucose metabolism network and the influence of the Apolipoprotein E (ApoE) gene between the SCD and normal control (NC) group by using graph theory. In this study, we included 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scans from Xuanwu Hospital in Beijing, China. 85 SCD subjects and 74 NC subjects were included. First, we calculated and compared network parameters between the two groups. We then identified the bilateral insula and bilateral parahippocampal gyrus as seed sites and studied the connections to the whole brain. The results showed that both the SCD and the NC showed small-world nature, but the metabolic network of SCD tended to be more regular. The clustering coefficient and local efficiency of SCD were significantly higher than those of NC (P<0.05). In addition, we found that carrying APOE resulted in enhanced metabolic connectivity, but with weaker aggregation and local information exchangeability. Our results suggested that there are differences in the glucose metabolic brain network between SCD and NC, suggesting that the graph-theoretic analysis method may provide evidence for the early pathological mechanism of AD.Clinical relevance- This study suggests that the graph-theoretic analysis method may provide evidence for the early pathological mechanism of AD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease* / diagnostic imaging
  • Alzheimer Disease* / metabolism
  • Apolipoproteins E / metabolism
  • Brain / pathology
  • Connectome*
  • Glucose / metabolism
  • Humans

Substances

  • Apolipoproteins E
  • Glucose