Using Four-Point Impedance to Detect and Locate Blood during Cochlear Implantation

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-4. doi: 10.1109/EMBC40787.2023.10340312.

Abstract

Biosensing technologies are emerging as an important consideration when designing implantable medical devices. For cochlear implants, biosensors may help preserve the natural hearing a patient has prior to implantation by detecting blood in the cochlea during insertion. If blood enters the cochlea, it creates a hostile environment leading to further hearing loss and reduced device function. Here we present four-point impedance, measured directly from a commercial cochlear implant, as a biosensor for real-time detection of blood in the cochlea. The four-point impedance of different concentrations of whole blood in saline were measured using the impedance-measuring capabilities of a cochlear implant with a square-wave stimulation. Impedance derived from a cochlear implant succeeded in differentiating concentrations of blood in saline with results from a sensitivity analysis showing the lowest concentration the system could detect was between 12 % to 21 % of whole blood. In a subsequent in-vitro study, continuous four-point impedance was measured from a cochlear implant while it was inserted into a 3D printed cochlear model, followed by an injection of blood to emulate surgical events. These results demonstrated four-point impedance from a cochlear implant can instantaneously detect the addition of blood within the cochlea and localize it along the electrode array. The adaptation of a biosensing tool using a cochlear implant provides more information that can be relayed to the surgeon intraoperatively to potentially enhance hearing outcomes with the implant.Clinical Relevance - Using the cochlear implant itself to detect intra-cochlear bleeding may open therapeutic avenues to prevent further hearing loss.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cochlea / surgery
  • Cochlear Implantation* / methods
  • Cochlear Implants*
  • Deafness* / surgery
  • Electric Impedance
  • Hearing Loss* / surgery
  • Humans