Wall Shear Stress and Pressure Fluctuations under Oscillating Stimulation in Helical Square Ducts with Cochlea-like Geometrical Curvature and Torsion

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-7. doi: 10.1109/EMBC40787.2023.10340844.

Abstract

Our study aims to provide basic insights on the impact of the spiral shape of the cochlea, i.e., of geometric torsion and curvature, on wall pressure and wall shear stress. We employed computational fluid dynamics in square duct models with curvature and torsion similar to those found in human cochleae. The results include wall pressures and wall shear stresses within the ducts under oscillating axial flow. Our findings indicate that the helical shape generates higher transverse wall shear stresses compared to exclusively curved or twisted ducts. The wall pressures and transverse wall shear stresses we found rise to amounts that may be physiologically relevant in the cochlea.Clinical relevance- The role of the spiral shape of the cochlea in hearing physiology remains, for a large part, elusive. For a better apprehension of hearing and its disorders, it is important to investigate the influence of geometric properties on biofluids motion and emerging phenomena in the cochlea.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cochlea*
  • Hearing*
  • Humans
  • Motion