Validation of a platinum bioelectrode model for preclinical electrical and biological performance evaluation

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-4. doi: 10.1109/EMBC40787.2023.10340761.

Abstract

High throughput testing of clinically representative Pt electrodes requires an inexpensive, efficient method of production. The aim of this study was to develop a facile platinum (Pt) model electrode (PME) and assess its production process, stability, and reproducibility. In this study a new model electrode was developed using representative substrates and dimensions as state-of-the-art electrode arrays used for neural stimulation. It was found that the PME is a highly reproducible robust system with similar electrochemical performance but with lower variability than other neural prosthetic arrays.Clinical Relevance- As an estimate these novel model electrodes cost 300 times less than a cochlear implant, can be manufactured in a tenth of the time and with a less than 10% failure rate. It is expected that model electrodes with low variability of electrical properties will significantly improve preclinical validation testing of electrochemical stimulation, surface modifications, and coatings.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cochlear Implants*
  • Electric Impedance
  • Electricity
  • Platinum* / chemistry
  • Reproducibility of Results

Substances

  • Platinum