Improving Tongue Command Accuracy: Unlocking the Power of Electrotactile Feedback Training

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-5. doi: 10.1109/EMBC40787.2023.10340808.

Abstract

People with spinal cord injury or neurological disorders frequently require aid in performing daily tasks. Utilizing hand-free assistive technologies (ATs), particularly tongue-controlled ATs, may offer a feasible solution as the tongue is controlled by a cranial nerve and remains functional in the presence of spinal cord injury. However, existing intra-oral ATs require a significant level of training to accurately issuing these commands. To minimize the training process, we have designed intuitive tongue commands for our Multifunctional intraORal Assistive technology (MORA). Our prior works demonstrated that electrotactile feedback outperformed visual feedback in tasks involving tongue motor learning. In this study, we implement electrical stimulation (E-stim) as electrotactile feedback on the tongue to teach new tongue commands of MORA, and quantitatively analyze the efficacy of the electrotactile feedback in command accuracy and precision. The random command task was adopted to evaluate tongue command accuracy with 14 healthy participants. The average sensors contacted per trial dropped significantly from 1.57 ± 0.15 to 1.16 ± 0.05 with electrotactile feedback. After training with electrotactile feedback, 83% of the trials were completed with only one command having been activated. These results suggest that E-stim enhanced both the accuracy and precision of subjects' tongue command training. The results of this study pave the way for the implementation of electrotactile feedback as an accurate and precise command training technique for MORA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electric Stimulation / methods
  • Feedback
  • Feedback, Sensory* / physiology
  • Humans
  • Spinal Cord Injuries*
  • Tongue / physiology