Scalable Anatomically-Tunable Fully In-Ear Dry-Electrode Array for User-Generic Unobtrusive Electrophysiology

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-4. doi: 10.1109/EMBC40787.2023.10340888.

Abstract

Traditional scalp EEG instrumentation is bulky and arduous to set up, requiring wires that constrain the subject's movement, conductive wet gels that dry over time which limits long-term recording, and/or is socially stigmatized. Therefore, there is growing research in in-ear EEG to increase user wearability, ease of use, and concealability. However, the fabrication of in-ear EEG sensors utilizes complex equipment and materials to capture the intricate geometry of the ear and to fabricate custom earpieces and electrodes. This work aims to lower the barrier of entry by decreasing the fabrication complexity by using PCB components with versatile, user-generic designs. Measured results on the assembled earpiece demonstrate that it viably captures eye blinks, jaw clench, auditory steady-state response (ASSR), and alpha modulation. Additionally, electrochemical impedance spectroscopy (EIS) experiments show reliable electrode-skin contact with impedance comparable to conventional dry-electrode designs at substantially greater channel density.

MeSH terms

  • Electric Impedance
  • Electrodes
  • Electroencephalography* / methods
  • Electrophysiology
  • Skin*