MBD-Net: Multi-Branch Dilated Convolutional Network With Cyst Discriminator for Renal Multi-Structure Segmentation

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-4. doi: 10.1109/EMBC40787.2023.10341054.

Abstract

In surgery-based renal cancer treatment, one of the most essential tasks is the three-dimensional (3D) kidney parsing on computed tomography angiography (CTA) images. In this paper, we propose an end-to-end convolutional neural network-based framework to segment multiple renal structures, including kidneys, kidney tumors, arteries, and veins from arterial-phase CT images. Our method consists of two collaborative modules: First, we propose an encoding-decoding network, named Multi-Branch Dilated Convolutional Network (MBD-Net), consisting of residual, hybrid dilated convolutional, and reduced-dimensional convolutional structures, which improves the feature extraction ability with relatively fewer network parameters. Given that renal tumors and cysts have confusing geometric structures, we also design the Cyst Discriminator to effectively distinguish tumors from cysts without labeling information via gray-scale curves and radiographic features. We have quantitatively evaluated our approach on a publicly available dataset from MICCAI 2022 Kidney Parsing for Renal Cancer Treatment Challenge (KiPA2022), with mean Dice similarity coefficient (DSC) as 96.18%, 90.99%, 88.66% and 80.35% for the kidneys, kidney tumors, arteries, and veins respectively, winning the stable and top performance in the challenge.Clinical relevance-The proposed CNN-Based framework can automatically segment 3D kidneys, renal tumors, arteries, and veins for kidney parsing techniques, benefiting surgery-based renal cancer treatment.

MeSH terms

  • Computed Tomography Angiography
  • Cysts*
  • Humans
  • Kidney / diagnostic imaging
  • Kidney Neoplasms* / diagnostic imaging
  • Neural Networks, Computer