Simulation-based design optimization of a wrist exoskeleton

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-4. doi: 10.1109/EMBC40787.2023.10340424.

Abstract

Exoskeletons are widely used in the field of rehabilitation robotics. Upper limb exoskeletons (ULEs) can be very useful for patients with diminished ability to control their limbs in aiding activities of daily living (ADLs). The design of ULEs must account for a human's limitations and ability to work with an exoskeleton. It can typically be achieved by the involvement of vulnerable end-users in each design cycle. On the other hand, simulation-based design methods on a model with human-in-the-loop can limit the design cycles, thereby reducing research time and dependency on end users. This study makes it evident by using a case where the design of an exoskeleton wrist can be optimized with the usage of a torsional spring at the joint, that compensates for the required motor torque. Considering the human-in-the-loop system, the multibody modeling results show that the usage of a torsional spring in the joint can be useful in designing a lightweight and compact exoskeleton joint by downsizing the motor.Clinical Relevance- The proposed methodology of designing an upper-limb exoskeleton has a utility in limiting design cycles and making it both convenient and useful to assist users with severe impairment in ADLs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Activities of Daily Living
  • Equipment Design
  • Exoskeleton Device*
  • Humans
  • Upper Extremity
  • Wrist