Method for measuring jugular venous pulse with a miniature gyroscope sensor patch

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-4. doi: 10.1109/EMBC40787.2023.10341071.

Abstract

The right internal jugular vein is connected to the right atrium of the heart via the superior vena cava, and consequently its pressure, known as the jugular venous pressure or the jugular venous pulse (JVP), is an important indicator of cardiac function. The JVP can be estimated visually from the neck but it is rather difficult and imprecise. In this article we propose a method to measure the JVP using a motion sensor patch attached to the neck. The JVP signal was extracted from the sensor's 3-axes gyroscope signal and aligned with simultaneously measured ECG and seismocardiogram signals.The method was tested on 20 healthy subjects. The timings of the characteristic JVP waves were compared with the ECG R peaks and seismocardiogram heart sounds S1 and S2. The JVP was reliably measured from 18 subjects with all three waves identified. The timings of the waves were also physiologically plausible when compared to the ECG R peak and the heart sounds. Importantly, the JVP was also found to modulate with respiration, further indicating that the measured signal was indeed the JVP and not the carotid pulse.The results show that the JVP can be measured with a wearable patch-like device registering the delicate motions of the right internal jugular vein. The method has potential to be developed into a clinical tool to measure cardiac health in diseases such as heart failure and chronic obstructive pulmonary disease (COPD).Clinical relevance-The developed method could enable an affordable measurement of clinically important cardiac parameter, jugular venous pulse, as a part of a routine examination.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cardiovascular Physiological Phenomena
  • Central Venous Pressure / physiology
  • Heart Atria
  • Heart Failure*
  • Humans
  • Vena Cava, Superior*