Nanosized ethosomal dispersions for enhanced transdermal delivery of nebivolol using intradermal/transfollicular sustained reservoir: in vitro evaluation, confocal laser scanning microscopy, and in vivo pharmacokinetic studies

Pharm Dev Technol. 2024 Jan;29(1):40-51. doi: 10.1080/10837450.2023.2294278. Epub 2023 Dec 19.

Abstract

Nebivolol (NBV), a BCS class II anti-hypertensive drug, suffers from limited solubility and oral bioavailability. Nanosized ethosomes were adopted as an approach to solubilize and deliver NBV transdermally, as a substitute to oral route. Ethosomal dispersions were prepared employing thin film hydration method. Formulation variables were adjusted to obtain entrapment efficiency; EE > 50%, particle size; PS < 100 nm, zeta potential; ZP > ±25 mV, and polydispersity index; PDI < 0.5. The optimized ethosomal dispersion (OED) showed accepted EE 86.46 ± 0.15%, PS 73.50 ± 0.08 nm, ZP 33.75 ± 1.20 mV, and PDI 0.31 ± 0.07. It also showed enhanced cumulative amount of NBV permeated at 8 h (Q8) 71.26 ± 1.46% and 24 h (Q24) 98.18 ± 1.02%. TEM images denoted spherical vesicles with light colored lipid bi-layer and dark core. Confocal laser scanning microscopy showed deeply localized intradermal and transfollicular permeation of the fluorolabelled OED (FL-OED). Nanosized FL-OED (<100 nm) can permeate through hair follicles creating a drug reservoir for enhanced systemic absorption. OED formulated into transdermal patch (OED-TP1) exhibited accepted physicochemical properties including; thickness 0.14 ± 0.01 mm, folding endurance 151 ± 0.07, surface pH 5.80 ± 0.15, drug content 98.64 ± 2.01%, mucoadhesion 8534 ± 0.03, Q8 87.61 ± 0.11%, and Q24 99.22 ± 0.24%. In vivo pharmacokinetic studies showed significantly enhanced bioavailability of OED-TP1 by 7.9 folds compared to oral Nevilob® tablets (p = 0.0002). It could be concluded that OED-TP1 can be a promising lipid nanocarrier TDDS for NBV and an efficacious alternative route of administration for hypertensive patients suffering from dysphagia.

Keywords: Nebivolol-loaded ethosomes; enhanced bioavailability; systemic absorption; transdermal permeation; transfollicular delivery.

Plain language summary

Ethosomes loaded with lipophilic drugs, as NBV, can have two possible pathways of permeation through the skin; intradermal and transfollicular.Nanosized ethosomes (< 100 nm) can produce efficient intradermal and transfollicular reservoirs for sustained drug delivery.The formulated transdermal patch loaded with the optimized ethosomal dispersion (OED) showed enhanced bioavailability by 7.9 folds compared to Nevilob® oral tablets.

MeSH terms

  • Administration, Cutaneous
  • Humans
  • Lipids*
  • Liposomes / chemistry
  • Microscopy, Confocal
  • Nebivolol
  • Particle Size
  • Skin*

Substances

  • Nebivolol
  • Lipids
  • Liposomes