SOx Functionalized NiOOH Nanosheets Embedded in Ni(OH)2 Microarray for High-Efficiency Seawater Oxidation

Small. 2023 Dec 11:e2305694. doi: 10.1002/smll.202305694. Online ahead of print.

Abstract

A nano-micro heterostructure has been established to address the challenges of selectivity, stress, pitting corrosion, and long-term durability of anodes in unpurified seawater. The heterostructure comprised NiOOH nanosheets embedded within a high surface area Ni(OH)2 microarray, and the surface structure is further functionalized with sulfate (SOx ). This cation-selective protective layer impedes chloride (Cl- ) diffusion and abstracts H from reaction intermediates, leading to enhanced selectivity and corrosion resistance of the anode. The multilevel porosity within the randomly oriented nanosheets and the underlying support provide short diffusion channels for ions and mass migration, ensuring efficient ion transport and long-term structural and mechanical durability of the active sites, even at high current density. Remarkably, the catalyst requires a small input voltage of 400 mV to deliver a current density of 1 A cm-2 and maintains it for over 168 h without noticeable degradation or hypochlorite formation. Spectroscopic analysis and density functional theory (DFT) calculations reveal that the Ni electronic structure in the +3 valence state, its strong structural interaction with the underlying microarray, and the functionality of SOx significantly reduce the required potential for O-O coupling.

Keywords: Cation-selective protective layer; corrosion resistance; seawater electrolysis; sustainable anode.