Recent progress on defect-engineering in ferroelectric HfO2: The next step forward via multiscale structural optimization

Mater Horiz. 2024 Feb 6;11(3):626-645. doi: 10.1039/d3mh01273e.

Abstract

The discovery of unconventional scale-free ferroelectricity in HfO2-based fluorite thin films has attracted great attention in recent years for their promising applications in low-power logic and nonvolatile memories. The ferroelectricity of HfO2 is intrinsically originated from the widely accepted ferroelectric metastable orthorhombic Pca21 phase. In the last decade, defect-doping/solid solution has shown excellent prospects in enhancing and stabilizing the ferroelectricity via isovalent or aliovalent defect-engineering. Here, the recent advances in defect-engineered HfO2-based ferroelectrics are first reviewed, including progress in mono-ionic doping and mixed ion-doping. Then, the defect-lattice correlation, the point-defect promoted phase transition kinetics, and the interface-engineered dynamic behaviour of oxygen vacancy are summarized. In addition, thin film preparation and ion bombardment doping are summarized. Finally, the outlook and challenges are discussed. A multiscale structural optimization approach is suggested for further property optimization. This article not only covers an overview of the state-of-art advances of defects in fluorite ferroelectrics, but also future prospects that may inspire their further property-optimization via defect-engineering.

Publication types

  • Review