Multiplane HiLo microscopy with speckle illumination and non-local means denoising

J Biomed Opt. 2023 Nov;28(11):116502. doi: 10.1117/1.JBO.28.11.116502. Epub 2023 Nov 17.

Abstract

Significance: HiLo microscopy synthesizes an optically sectioned image from two images, one obtained with uniform and another with patterned illumination, such as laser speckle. Speckle-based HiLo has the advantage of being robust to aberrations but is susceptible to residual speckle noise that is difficult to control. We present a computational method to reduce this residual noise without undermining resolution. In addition, we improve the versatility of HiLo microscopy by enabling simultaneous multiplane imaging (here nine planes).

Aim: Our goal is to perform fast, high-contrast, multiplane imaging with a conventional camera-based fluorescence microscope.

Approach: Multiplane HiLo imaging is achieved with the use of a single camera and z-splitter prism. Speckle noise reduction is based on the application of a non-local means (NLM) denoising method to perform ensemble averaging of speckle grains.

Results: We demonstrate the capabilities of multiplane HiLo with NLM denoising both with synthesized data and by imaging cardiac and brain activity in zebrafish larvae at 40 Hz frame rates.

Conclusions: Multiplane HiLo microscopy aided by NLM denoising provides a simple tool for fast optically sectioned volumetric imaging that can be of general utility for fluorescence imaging applications.

Keywords: HiLo microscopy; fluorescence; multiplane microscopy; non-local means; optical sectioning; speckle.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Lasers
  • Light
  • Lighting*
  • Microscopy*
  • Zebrafish