Identification of parthenogenesis-inducing effector proteins in Wolbachia

bioRxiv [Preprint]. 2023 Dec 2:2023.12.01.569668. doi: 10.1101/2023.12.01.569668.

Abstract

Bacteria in the genus Wolbachia have evolved numerous strategies to manipulate arthropod sex, including the conversion of would-be male offspring to asexually reproducing females. This so-called "parthenogenesis-induction" phenotype can be found in a number of Wolbachia strains that infect arthropods with haplodiploid sex determination systems, including parasitoid wasps. Despite the discovery of microbe-mediated parthenogenesis more than 30 years ago, the underlying genetic mechanisms have remained elusive. We used a suite of genomic, computational, and molecular tools to identify and characterize two proteins that are uniquely found in parthenogenesis-inducing Wolbachia and have strong signatures of host-associated bacterial effector proteins. These putative parthenogenesis-inducing proteins have structural homology to eukaryotic protein domains including nucleoporins, the key insect sex-determining factor Transformer, and a eukaryotic-like serine-threonine kinase with leucine rich repeats. Furthermore, these proteins significantly impact eukaryotic cell biology in the model, Saccharomyces cerevisiae. We suggest these proteins are parthenogenesis-inducing factors and our results indicate this would be made possible by a novel mechanism of bacterial-host interaction.

Keywords: Symbiosis; Wolbachia; mitosis; parasitoid; parthenogenesis; sex.

Publication types

  • Preprint