Copper nanoparticles/polyaniline/molybdenum disulfide composite as a nonenzymatic electrochemical glucose sensor

Heliyon. 2023 Oct 26;9(12):e21272. doi: 10.1016/j.heliyon.2023.e21272. eCollection 2023 Dec.

Abstract

A Cu@Pani/MoS2 nanocomposite was successfully synthesized via combined in-situ oxidative polymerization and hydrothermal reaction and applied to an electrochemical nonenzymatic glucose sensor. The morphology of the prepared Cu@Pani/MoS2 nanocomposite was characterized using FE-SEM and Cs-STEM, and electrochemical analysis was performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry techniques. Electrostatic interaction between Cu@Pani and MoS2 greatly enhanced the charge dispersion, electrical conductivity, and stability, resulting in excellent electrochemical performance. The Cu@Pani/MoS2 was used as an electrocatalyst to detect glucose in an alkaline medium. The proposed glucose sensor exhibited a sensitivity, detection limit, and wide linear range of 69.82 μAmM-1cm-2, 1.78 μM, and 0.1-11 mM, respectively. The stability and selectivity of the Cu@Pani/MoS2 composite for glucose compared to that of the potential interfering species, as well as its ability to determine the glucose concentration in diluted human serum samples at a high recovery percentage, demonstrated its viability as a nonenzymatic glucose sensor.

Keywords: Detection limit; Glucose sensor; Polymerization; Selectivity; Sensitivity.