Isoxazole analogues of dibenzazepine as possible leads against ulcers and skin disease: In vitro and in silico exploration

Saudi Pharm J. 2023 Dec;31(12):101877. doi: 10.1016/j.jsps.2023.101877. Epub 2023 Nov 16.

Abstract

Utilizing multi-target drugs shows great promise as an effective strategy against polygenic diseases characterized by intricate patho-mechanisms, such as ulcers, skin dermatitis, and cancers. The current research centers around the creation of hybrid compounds, connecting dibenzazepine and isoxazole, with the aim of exploring their potential as inhibitors for urease and tyrosinase enzymes. Analogs 6a, 6b, 6d, 6 h-6j, and 6 l demonstrated strong inhibitory potential against tyrosinase enzyme with IC50 values of 4.32 ± 0.31-12.36 ± 0.48. Whereas analogs 6a, 6c, 6e, 6f, 6h-6m, and 6r exhibited potent inhibitory activities against urease enzyme with IC50 values of 3.67 ± 0.91-15.60 ± 0.18 μM. Furthermore, compounds 6i, 6n, and 6r showed weak toxic effect in BJ-cell line, whereas the remaining compounds were found non-toxic to normal cell line. The mechanistic studies of potent inhibitors of both the enzymes showed competitive mode of inhibition. Molecular docking was employed to establish the relationship between structure and activity and to elucidate the interaction mechanism. This analysis revealed that the active analogs exhibited crucial interactions with the active site residues of urease and tyrosinase, thus corroborating our experimental results. Hence, the generated derivatives of dibenzazepine-linked isoxazoles present intriguing starting points for further investigations into their potential as inhibitors of urease and tyrosinase, with the potential for future modification and enhancement.

Keywords: Cell toxicity; Inhibitors; Kinetics; Molecular docking; Tyrosinase; Urease.