Proteomic and computational analyses followed by functional validation of protective effects of trigonelline against calcium oxalate-induced renal cell deteriorations

Comput Struct Biotechnol J. 2023 Nov 22:21:5851-5867. doi: 10.1016/j.csbj.2023.11.036. eCollection 2023.

Abstract

Trigonelline is a phytoalkaloid commonly found in green and roasted coffee beans. It is also found in decaffeinated coffee. Previous report has shown that extract from trigonelline-rich plant exhibits anti-lithiatic effects in a nephrolithiatic rat model. Nevertheless, cellular mechanisms underlying the anti-lithiatic properties of trigonelline remain hazy. Herein, we used nanoLC-ESI-Qq-TOF MS/MS and MaxQuant-based quantitative proteomics to identify trigonelline-induced changes in protein expression in MDCK renal cells. From a total of 1006 and 1011 proteins identified from control and trigonelline-treated cells, respectively, levels of 62 (23 upregulated and 39 downregulated) proteins were significantly changed by trigonelline. Functional enrichment and reactome pathway analyses suggested that these 62 altered proteins were related to stress response, cell cycle and cell polarity. Functional validation by corresponding experimental assays revealed that trigonelline prevented calcium oxalate monohydrate crystal-induced renal cell deteriorations by inhibiting crystal-induced overproduction of intracellular reactive oxygen species, G0/G1 to G2/M cell cycle shift, tight junction disruption, and epithelial-mesenchymal transition. These findings provide cellular mechanisms and convincing evidence for the renoprotective effects of trigonelline, particularly in kidney stone prevention.

Keywords: Anti-lithiatic; Bioactive compound; Bioinformatics; Coffee; Kidney stone; Proteomics; Reactome.