A novel approach to pulmonary bronchial tree model construction and performance index study

Front Pharmacol. 2023 Nov 23:14:1254804. doi: 10.3389/fphar.2023.1254804. eCollection 2023.

Abstract

The demand for respiratory disease and dynamic breathing studies has continuously driven researchers to update the pulmonary bronchial tree's morphology model. This study aims to construct a bronchial tree morphology model efficiently and effectively with practical algorithms. We built a performance index system using failure branch rate, volume ratio, and coefficient of variation of terminal volumes to evaluate the model performance. We optimized the parameter settings and found the best options to build the morphology model, and we constructed a 14th-generation bronchial tree model with a decent performance index. The dimensions of our model closely matched published data from anatomic in vitro measurements. The proposed model is adjustable and computable and will be used in future dynamic breathing simulations and respiratory disease studies.

Keywords: bronchial tree; model organisms; morphology model; pulmonary disease; respiratory disease.

Grants and funding

This research was funded by the National Key Research and Development Program of China (2022YFF0710800 and 2022YFF0710802); the National Natural Science Foundation of China (62071311); the Stable Support Plan for Colleges and Universities in Shenzhen of China (SZWD2021010); and the special program for key fields of colleges and universities in Guangdong Province (biomedicine and health) of China (2021ZDZX2008).