Global prediction of gross primary productivity under future climate change

Sci Total Environ. 2024 Feb 20:912:169239. doi: 10.1016/j.scitotenv.2023.169239. Epub 2023 Dec 10.

Abstract

The ecosystem gross primary productivity (GPP) is crucial to land-atmosphere carbon exchanges, and changes in global GPP as well as its influencing factors have been well studied in recent years. However, identifying the spatio-temporal variations of global GPP under future climate changes is still a challenging issue. This study aims to develop data-driven approach for predicting the global GPP as well as its monthly and annual variations up to the year 2100 under changing climate. Specifically, Catboost was employed to examine the potential relationship between the GPP and environmental factors, with climate variables, CO2 concentration and terrain attributes being selected as environmental factors. The predicted monthly and annual GPP from Coupled Model Intercomparison Project phase 6 (CMIP6) under future SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios were analyzed. The results indicate that the global GPP is predicted to increase under the future climate change in the 21st century. The annual GPP is expected to be 115.122 Pg C, 116.537 Pg C, 117.626 Pg C, and 120.097 Pg C in 2100 under four future scenarios, and the predicted monthly GPP shows seasonal difference. Meanwhile, GPP tends to increase in the northern mid-high latitude regions and decrease in the equatorial regions. For the climate zones form Köppen-Geiger classification, the arid, cold, and polar zones present increased GPP, while GPP in the tropical zone will decrease in the future. Moreover, the high importance of climate variables in GPP prediction illustrates that the future climate change is the main driver of the global GPP dynamics. This study provides a basis for predicting how global GPP responds to future climate change in the coming decades, which contribute to understanding the interactions between vegetation and climate.

Keywords: Climate change; Gross primary productivity; Shared socioeconomic pathways; Spatiotemporal variation; Terrestrial ecosystem.