Tree growth and density enhanced, while diversity and spatial clustering reduced soil mycorrhizal C and N sequestration: Strong interaction with soil properties in northeastern China

Sci Total Environ. 2024 Feb 20:912:169131. doi: 10.1016/j.scitotenv.2023.169131. Epub 2023 Dec 8.

Abstract

In this paper, the effects of species diversity, tree growth, and spatial clustering on mycorrhizal carbon and nitrogen sequestration and the interaction of soil physicochemical properties in Northeast China were investigated. Based on 720 10 m ∗ 10 m plots in Harbin Experimental Forest Farm of Northeast Forestry University, we determined mycorrhizal biomarkers of easily extractable Glomalin-related soil protein (EEG) and total Glomalin-related soil protein (TG). Four plant diversity indices, seven structural metrics, and five soil properties were also measured. We found that: 1) The low tree diversity plots had 1.08-1.23 times higher TG, EEG, TG-N/TN (proportion of N in TG to TN), and TG-C/SOC (proportion of C in TG to SOC) than the high plots. 2) Tree diameter was negatively correlated with EEG and TG, but positively correlated with the EEG and TG contribution to soil TN and SOC. Soil EEG and TG were positively correlated with under-branch height and tree density. W (Uniform Angle Index, higher W indicates more clustering of tree distribution in the plot) was negatively correlated with the above four ratios and positively correlated with EEG/TG. 3) pH was the most powerful explainer for the GRSP variations (6.8 %, strongest negative association with GRSP/TN, R2 > 0.13), followed by soil electrical conductance (6.5 %, positive relation with TG, p < 0.05), AP (3.2 %). 4) Plant diversity mainly affected GRSP traits through the interaction with soils (0.07), tree growth and density directly increased TG, TG-N/TN, and TG-C/SOC, while tree spatial distribution directly reduced TG-N/TN. Our finding highlighted the important effects of tree diversity and forest structural traits on GRSP amount, carbon sequestration, and nutrient retentions, and could support glomalin-related forest soil management of temperate forests in the high-latitude northern hemisphere.

Keywords: Community structure; GRSP; Plant diversity; SOC; Spatial structure; TN.

MeSH terms

  • Carbon / analysis
  • China
  • Forests
  • Fungal Proteins / metabolism
  • Glycoproteins / metabolism
  • Humans
  • Mycorrhizae* / metabolism
  • Soil* / chemistry
  • Trees / metabolism

Substances

  • Soil
  • Fungal Proteins
  • Glycoproteins
  • Carbon