Stem Cell Responsiveness to Imatinib in Chronic Myeloid Leukemia

Int J Mol Sci. 2023 Nov 23;24(23):16671. doi: 10.3390/ijms242316671.

Abstract

Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease characterized by the presence of the BCR-ABL fusion gene, which results from the Philadelphia chromosome. Since the introduction of tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM), the clinical outcomes for patients with CML have improved significantly. However, IM resistance remains the major clinical challenge for many patients, underlining the need to develop new drugs for the treatment of CML. The basis of CML cell resistance to this drug is unclear, but the appearance of additional genetic alterations in leukemic stem cells (LSCs) is the most common cause of patient relapse. However, several groups have identified a rare subpopulation of CD34+ stem cells in adult patients that is present mainly in the bone marrow and is more immature and pluripotent; these cells are also known as very small embryonic-like stem cells (VSELs). The uncontrolled proliferation and a compromised differentiation possibly initiate their transformation to leukemic VSELs (LVSELs). Their nature and possible involvement in carcinogenesis suggest that they cannot be completely eradicated with IM treatment. In this study, we demonstrated that cells from CML patients with the VSELs phenotype (LVSELs) similarly harbor the fusion protein BCR-ABL and are less sensitive to apoptosis than leukemic HSCs after IM treatment. Thus, IM induces apoptosis and reduces the proliferation and mRNA expression of Ki67 more efficiently in LHSCs than in leukemic LVSELs. Finally, we found that the expression levels of some miRNAs are affected in LVSELs. In addition to the tumor suppressor miR-451, both miR-126 and miR-21, known to be responsible for LSC leukemia-initiating capacity, quiescence, and growth, appear to be involved in IM insensitivity of LVSELs CML cell population. Targeting IM-resistant CML leukemic stem cells by acting via the miRNA pathways may represent a promising therapeutic option.

Keywords: BCR-ABL; CML; LVSELs; VSELs; drug resistance; imatinib; leukemic stem cells; miRNA; stem cells.

MeSH terms

  • Adult
  • Apoptosis
  • Drug Resistance, Neoplasm / genetics
  • Fusion Proteins, bcr-abl / genetics
  • Fusion Proteins, bcr-abl / metabolism
  • Humans
  • Imatinib Mesylate / pharmacology
  • Imatinib Mesylate / therapeutic use
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / drug therapy
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / genetics
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / pathology
  • MicroRNAs* / metabolism
  • Neoplastic Stem Cells / metabolism
  • Protein Kinase Inhibitors / metabolism
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use
  • Stem Cells / metabolism

Substances

  • Imatinib Mesylate
  • Protein Kinase Inhibitors
  • Fusion Proteins, bcr-abl
  • MicroRNAs

Grants and funding

This study was partially funded by ADPS, as well as by the Conseil Départemental du Haut–Rhin.