A Simple Approach for Regenerating Electrolyzed Hydrogen Production Using Non-De-Ionized Water Sources

Materials (Basel). 2023 Nov 27;16(23):7382. doi: 10.3390/ma16237382.

Abstract

This research focuses on using natural renewable water resources, filters, and performance recovery systems to reduce the cost of generating pure hydrogen for Proton Exchange Membrane Fuel Cells (PEMFCs). This study uses de-ionized (DI) water, tap water, and river water from upstream as the water source. Water from these sources passes through 1 μm PP filters, activated carbon, and reverse osmosis for filtering. The filtered water then undergoes hydrogen production experiments for a duration of 6000 min. Performance recovery experiments follow directly after hydrogen production experiments. The hydrogen production experiments show the following: DI water yielded a hydrogen production rate of 27.13 mL/min; unfiltered tap water produced 15.41 mL/min; unfiltered upstream river water resulted in 10.03 mL/min; filtered tap water yielded 19.24 mL/min; and filtered upstream river water generated 18.54 mL/min. Performance recovery experiments conducted by passing DI water into PEMFCs for 15 min show that the hydrogen generation rate of tap water increased to 25.73 mL/min, and the rate of hydrogen generation of upstream river water increased to 22.58 mL/min. In terms of cost-effectiveness, under the same volume of hydrogen production (approximately 600 kg/year), using only DI water costs 1.8-times more than the cost of using filtered tap water in experiments.

Keywords: filtration system; hydrogen energy; hydrogen production; proton exchange membrane fuel cell.

Grants and funding

This research received no external funding.