Inner core static tilt inferred from intradecadal oscillation in the Earth's rotation

Nat Commun. 2023 Dec 8;14(1):8130. doi: 10.1038/s41467-023-43894-9.

Abstract

The presence of a static tilt between the inner core and mantle is an ongoing discussion encompassing the geodynamic state of the inner core. Here, we confirm an approximate 8.5 yr signal in polar motion is the inner core wobble (ICW), and find that the ICW is also contained in the length-of-day variations of the Earth's rotation. Based on the determined amplitudes of the ICW and its good phase consistency in both polar motion and the length-of-day variations, we infer that there must be a static tilt angle θ between the inner core and the mantle of about 0.17 ± 0.03°, most likely towards ~90°W relative to the mantle, which is two orders of magnitude lower than the 10° assumed in certain geodynamic research. This tilt is consistent with the assumption that the average density in the northwestern hemisphere of the inner core should be greater than that in the other regions. Further, the observed ICW period (8.5 ± 0.2 yr) suggests a 0.52 ± 0.05 g/cm3 density jump at the inner core boundary.