A "One Arrow Three Eagle" Strategy to Improve CM-272 Primed Bladder Cancer Immunotherapy

Adv Mater. 2024 Mar;36(9):e2310522. doi: 10.1002/adma.202310522. Epub 2023 Dec 15.

Abstract

Immunotherapy using an immune-checkpoint blockade has significantly improved its therapeutic effects. CM-272, which is a novel epigenetic inhibitor of G9a, induces immunogenic cell death (ICD) for recovering the sensitivity to anti-PD-1 antibodies; however, the efficacy of CM-272 is greatly limited by promoting the transcription activity of HIF-1α to form a hypoxic environment. Here, a Fe3+ -based nanoscale metal-organic framework (MIL-53) is used to load CM-272 (ultra-high loading rate of 56.4%) for realizing an MIL-53@CM-272 nanoplatform. After entering bladder cancer cells, Fe3+ not only promotes the decomposition of H2 O2 into O2 for O2 -compensated sonodynamic therapy but reduces the high level of glutathione in the tumor microenvironment (TME) for enhancing reactive oxygen species, including ferroptosis and apoptosis. MIL-53 carriers can be degraded in response to the TME, accelerating the release of CM-272, which helps achieve the maximum effectiveness in an O2 -sufficient TME by attenuating drug resistance. Furthermore, MIL-53@CM-272 enhances dendritic cell maturation and synergistically combines it with an anti-programmed cell death protein 1 antibody during the study of immune-related pathways in the transcriptomes of bladder cancer cells using RNA-seq. This study presents the first instance of amalgamating nanomedicine with CM-272, inducing apoptosis, ferroptosis, and ICD to achieve the "one arrow three eagle" effect.

Keywords: CM-272; MIL-53; bladder cancer; hypoxia; immunotherapy.

MeSH terms

  • Animals
  • Apoptosis
  • Eagles*
  • Immunotherapy
  • Tumor Microenvironment
  • Urinary Bladder
  • Urinary Bladder Neoplasms* / drug therapy