MicroRNAs regulating signaling pathways in cardiac fibrosis: potential role of the exercise training

Am J Physiol Heart Circ Physiol. 2024 Mar 1;326(3):H497-H510. doi: 10.1152/ajpheart.00410.2023. Epub 2023 Dec 8.

Abstract

Cardiovascular and metabolic diseases such as hypertension, type 2 diabetes, and obesity develop long-term fibrotic processes in the heart, promoting pathological cardiac remodeling, including after myocardial infarction, reparative fibrotic processes also occur. These processes are regulated by many intracellular signaling pathways that have not yet been completely elucidated, including those associated with microRNA (miRNA) expression. miRNAs are small RNA transcripts (18-25 nucleotides in length) that act as posttranscriptionally regulators of gene expression, inhibiting or degrading one or more target messenger RNAs (mRNAs), and proven to be involved in many biological processes such as cell cycle, differentiation, proliferation, migration, and apoptosis, directly affecting the pathophysiology of several diseases, including cardiac fibrosis. Exercise training can modulate the expression of miRNAs and it is known to be beneficial in various cardiovascular diseases, attenuating cardiac fibrosis processes. However, the signaling pathways modulated by the exercise associated with miRNAs in cardiac fibrosis were not fully understood. Thus, this review aims to analyze the expression of miRNAs that modulate signaling pathways in cardiac fibrosis processes that can be regulated by exercise training.

Keywords: cardiac fibrosis; exercise training; microRNAs; signaling pathways.

Publication types

  • Review

MeSH terms

  • Diabetes Mellitus, Type 2*
  • Exercise
  • Fibrosis
  • Humans
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • RNA, Messenger / genetics
  • Signal Transduction

Substances

  • MicroRNAs
  • RNA, Messenger