The impact of controlling diseases of significant global importance on greenhouse gas emissions from livestock production

One Health Outlook. 2023 Dec 8;5(1):17. doi: 10.1186/s42522-023-00089-y.

Abstract

Background: A considerable body of evidence has reported the beneficial effects of improving productivity on reducing environmental impacts from livestock production. However, despite the negative impacts of animal diseases on reproduction, growth and milk production, there is little information available upon the impacts of animal disease on greenhouse gas emissions (GHGe). This study aimed to partially address this knowledge gap by investigating the effects of globally important vaccine-preventable diseases on GHGe from various livestock systems, namely: intensive dairy, extensive beef, commercial swine and backyard poultry production.

Methods: Simple deterministic models were developed within Microsoft Excel to quantify the impacts of livestock disease on productivity (defined as total milk and/or meat yield, MMY) adjusted for disease prevalence both at the population level (high or low), and at the herd or flock level. Disease-induced changes in MMY were applied to the GHGe per kg of milk or meat according to the consequent changes in livestock populations required to maintain milk or meat production. Diseases investigated comprised foot and mouth, brucellosis, anthrax, lumpy skin disease, classical swine fever, porcine reproductive and respiratory syndrome (PRRS), low and high pathogenicity avian influenza (LPAI and HPAI), avian infectious bronchitis and Newcastle disease.

Results: All diseases investigated had multifactorial impacts on total MMY, yet diseases that increased mortality in breeding or growing livestock (e.g. anthrax, classical swine fever and HPAI) showed greater impacts on GHGe per unit of milk or meat produced than those that primarily affecting yields or reproduction (e.g. brucellosis or LPAI). Prevalence also had considerable effects on potential GHGe. For example, maintaining backyard poultry meat production from a 100,000 hen population with 70% prevalence of HPAI increased GHGe by 11,255 MT CO2eq compared to a 30% prevalence at 3475 MT CO2eq above the baseline (0% prevalence). Effective reduction of the prevalence of PRRS in swine from 60 to 10%, FMD in beef cattle from 45 to 5% prevalence, or AIB in poultry from 75 to 20% prevalence would reduce GHGe intensities (CO2eq/kg CW) by 22.5%, 9.11% and 11.3% respectively.

Conclusions: Controlling livestock disease can reduce MMY losses at the farm level, which improves food security, reduces GHGe and enhances livestock system sustainability.

Keywords: Animal health; Cattle; Environmental impact; Food security; Sustainability; Vaccines.