Differential cortical gray matter changes in early- and late-onset patients with amyotrophic lateral sclerosis

Cereb Cortex. 2024 Jan 14;34(1):bhad426. doi: 10.1093/cercor/bhad426.

Abstract

Age at onset may be an important feature associated with distinct subtypes of amyotrophic lateral sclerosis (ALS). Little is known about the neuropathological mechanism of early-onset ALS (EO-ALS) and late-onset ALS (LO-ALS). Ninety ALS patients were divided into EO-ALS and LO-ALS group, and 128 healthy controls were matched into young controls(YCs) and old controls (OCs). A voxel-based morphometry approach was employed to investigate differences in gray matter volume (GMV). Significant age at onset-by-diagnosis interactions were found in the left parietal operculum, left precentral gyrus, bilateral postcentral gyrus, right occipital gyrus, and right orbitofrontal cortex. Post hoc analysis revealed a significant decrease in GMV in all affected regions of EO-ALS patients compared with YCs, with increased GMV in 5 of the 6 brain regions, except for the right orbitofrontal cortex, in LO-ALS patients compared with OCs. LO-ALS patients had a significantly increased GMV than EO-ALS patients after removing the aging effect. Correspondingly, GMV of the left postcentral gyrus correlated with disease severity in the 2 ALS groups. Our findings suggested that the pathological mechanisms in ALS patients with different ages at onset might differ. These findings provide unique insight into the clinical and biological heterogeneity of the 2 ALS subtypes.

Keywords: age at onset; amyotrophic lateral sclerosis; sensorimotor cortex; structural brain MRI; voxel-based morphometry.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyotrophic Lateral Sclerosis* / diagnostic imaging
  • Amyotrophic Lateral Sclerosis* / pathology
  • Brain / pathology
  • Gray Matter / diagnostic imaging
  • Gray Matter / pathology
  • Humans
  • Magnetic Resonance Imaging
  • Motor Cortex* / pathology