Structures and bioactivities of monomeric and dimeric carvotacetones from Sphaeranthus africanus

Phytochemistry. 2024 Feb:218:113938. doi: 10.1016/j.phytochem.2023.113938. Epub 2023 Dec 5.

Abstract

Four previously undescribed carvotacetones including one monomeric (1) and three dimeric (8, 9, 10) derivatives, together with six known compounds were isolated from the n-hexane extract of the aerial parts of Sphaeranthus africanus L. The structures of the previously undescribed compounds were elucidated as 3-angeloyloxy-5-isobutanoyloxy-7-hydroxycarvotacetone (1), 7,7'-oxybis{3-angeloyloxy-5-[(2R*,3R*)-2,3-dihydroxy-2-methylbutanoyloxy]carvotacetone} (8), (2″S*,3″R*)-7-{3-angeloyloxy-5-[(2R*,3R*)-2,3-dihydroxy-2-methylbuta-noyloxy]carvotaceton-7-yloxy}-3-angeloyloxy-5-(2,3-dihydroxy-2-methylbutanoyloxy)carvo-tacetone (9), and 7,7'-oxybis{3-angeloyloxy-5-[(2S*,3R*)-2,3-dihydroxy-2-methylbutanoyl-oxy]carvotacetone} (10). The three dimeric derivatives (8-10) showed potent anti-proliferative activity against human cancer cell lines (CCRF-CEM, MDA-MB-231, U-251, HCT-116) with IC50 values ranging from 0.2 to 2.0 μM. Caspases 3 and 7 were found to be activated by all compounds, indicating apoptosis induction activity. Monomers exhibited a specific inhibition of NO production in BV2 and RAW 264.7 cells with IC50 values ranging from 4.2 to 6.8 μM which were 2-3.5-fold lower than IC50 values causing cytotoxicity. In addition, the carvotacetones reduced NF-κB1 (p105) mRNA expression at concentrations of 10 and 2.5 μM. Altogether, the results indicate that carvotacetones may be interesting lead structures for the development of anti-cancer and anti-inflammatory drugs.

Keywords: Anti-proliferative; Apoptosis induction activity; Asteraceae; Carvotacetones; Inhibition of NO production; Sphaeranthus africanus.

MeSH terms

  • Asteraceae* / chemistry
  • Cell Line
  • Cyclohexanones*
  • Humans
  • Plant Extracts / chemistry
  • Plant Extracts / pharmacology

Substances

  • carvotacetone
  • Cyclohexanones
  • Plant Extracts