Serum neuronal pentraxin 2 is related to cognitive dysfunction and electroencephalogram slow wave/fast wave frequency ratio in epilepsy

World J Psychiatry. 2023 Oct 19;13(10):714-723. doi: 10.5498/wjp.v13.i10.714.

Abstract

Background: Cognitive dysfunction in epileptic patients is a high-incidence complication. Its mechanism is related to nervous system damage during seizures, but there is no effective diagnostic biomarker. Neuronal pentraxin 2 (NPTX2) is thought to play a vital role in neurotransmission and the maintenance of synaptic plasticity. This study explored how serum NPTX2 and electroencephalogram (EEG) slow wave/fast wave frequency ratio relate to cognitive dysfunction in patients with epilepsy.

Aim: To determine if serum NPTX2 could serve as a potential biomarker for diagnosing cognitive impairment in epilepsy patients.

Methods: The participants of this study, conducted from January 2020 to December 2021, comprised 74 epilepsy patients with normal cognitive function (normal group), 37 epilepsy patients with cognitive dysfunction [epilepsy patients with cognitive dysfunction (ECD) group] and 30 healthy people (control group). The mini-mental state examination (MMSE) scale was used to evaluate cognitive function. We determined serum NPTX2 levels using an enzyme-linked immunosorbent kit and calculated the signal value of EEG regions according to the EEG recording. Pearson correlation coefficient was used to analyze the correlation between serum NPTX2 and the MMSE score.

Results: The serum NPTX2 level in the control group, normal group and ECD group were 240.00 ± 35.06 pg/mL, 235.80 ± 38.01 pg/mL and 193.80 ± 42.72 pg/mL, respectively. The MMSE score was lowest in the ECD group among the three, while no significant difference was observed between the control and normal groups. In epilepsy patients with cognitive dysfunction, NPTX2 level had a positive correlation with the MMSE score (r = 0.367, P = 0.0253) and a negative correlation with epilepsy duration (r = -0.443, P = 0.0061) and the EEG slow wave/fast wave frequency ratio value in the temporal region (r = -0.339, P = 0.039).

Conclusion: Serum NPTX2 was found to be related to cognitive dysfunction and the EEG slow wave/fast wave frequency ratio in patients with epilepsy. It is thus a potential biomarker for the diagnosis of cognitive impairment in patients with epilepsy.

Keywords: Biomarker; Cognitive dysfunction; Electroencephalogram slow wave/fast wave frequency ratio; Epilepsy; Serum neuronal pentraxin 2.