Transcription factor support for the dual embryological origin of the sternocleidomastoid and trapezius muscles

Clin Anat. 2024 Jan;37(1):147-152. doi: 10.1002/ca.24124.

Abstract

The embryological origin of the trapezius and sternocleidomastoid muscles has been debated for over a century. To shed light on this issue, the present anatomical study was performed. Five fresh frozen human cadavers, three males and two females, were used for this study. Samples from each specimen's trapezius and sternocleidomastoid were fixed in 10% formalin and placed in paraffin blocks. As Paired like homeodomain 2 (Pitx2) and T-box factor 1(Tbx1) have been implicated in the region and muscle type regulation, we performed Tbx1 and Pitx2 Immunohistochemistry (IHC) on these muscle tissue samples to identify the origin of the trapezius and sternocleidomastoid muscles. We have used the latest version of QuPath, v0.4.3, software to quantify the Tbx and Pitx2 staining. For the sternocleidomastoid muscle, for evaluated samples, the average amount of positively stained Tbx1 and Pitx2 was 25% (range 16%-30%) and 18% (range 12%-23%), respectively. For the trapezius muscles, for evaluated samples, the average amount of positively stained Tbx1 and Pitx2 parts of the samples was 17% (range 15%-20%) and 15% (14%-17%), respectively. Our anatomical findings suggest dual origins of both the trapezius and sternocleidomastoid muscles. Additionally, as neither Pitx2 nor Tbx1 made up all the staining observed for each muscle, other contributions to these structures are likely. Future studies with larger samples are now necessary to confirm these findings.

Keywords: anatomy; development; head; innervation; neck; pharyngeal arch; somite.

MeSH terms

  • Female
  • Humans
  • Male
  • Neck Muscles
  • Superficial Back Muscles*
  • Transcription Factors* / physiology

Substances

  • Transcription Factors