CO2 and H2 Activation on Zinc-Doped Copper Clusters

Chemphyschem. 2024 Jan 2;25(1):e202300409. doi: 10.1002/cphc.202300409. Epub 2023 Dec 6.

Abstract

Here we systematically investigate the CO2 and H2 activation and dissociation on small Cun Zn0/+ (n=3-6) clusters using Density Functional Theory. We show that Cu6 Zn is a superatom, displaying an increased HOMO-LUMO gap and is inert towards CO2 or H2 activation or dissociation. While other neutral clusters weakly activate CO2 , the cationic clusters preferentially bind the CO2 in monodentate nonactivated way. Notably, Cu4 Zn allows for the dissociation of activated CO2 , whereas larger clusters destabilize all activated CO2 binding modes. Conversely, H2 dissociation is favored on all clusters examined, except for Cu6 Zn. Cu3 Zn+ and Cu4 Zn, favor the formation of formate through the H2 dissociation pathway rather than CO2 dissociation. These findings suggest the potential of these clusters as synthetic targets and underscore their significance in the realm of CO2 hydrogenation.

Keywords: CO2 activation; CO2 hydrogenation; H2 activation; copper-zinc catalyst; metal clusters.