Electron and Spin Delocalization in [Co6 Se8 (PEt3 )6 ]0/+1 Superatoms

Chemphyschem. 2024 Jan 15;25(2):e202300064. doi: 10.1002/cphc.202300064. Epub 2023 Dec 6.

Abstract

Molecular clusters can function as nanoscale atoms/superatoms, assembling into superatomic solids, a new class of solid-state materials with designable properties through modifications on superatoms. To explore possibilities on diversifying building blocks, here we thoroughly studied one representative superatom, Co6 Se8 (PEt3 )6 . We probed its structural, electronic, and magnetic properties and revealed its detailed electronic structure as valence electrons delocalize over inorganic [Co6 Se8 ] core while ligands function as an insulated shell. 59 Co SSNMR measurements on the core and 31 P, 13 C on the ligands show that the neutral Co6 Se8 (PEt3 )6 is diamagnetic and symmetric, with all ligands magnetically equivalent. Quantum computations cross-validate NMR results and reveal degenerate delocalized HOMO orbitals, indicating aromaticity. Ligand substitution keeps the inorganic core nearly intact. After losing one electron, the unpaired electron in [Co6 Se8 (PEt3 )6 ]+1 is delocalized, causing paramagnetism and a delocalized electron spin. Notably, this feature of electron/spin delocalization over a large cluster is attractive for special single-electron devices.

Keywords: SSNMR; cluster aromaticity; quantum calculations; spin/electron delocalization; superatomic solid.