Role of Triplet States in the Photolysis of Proteogenic Amino Acids

Chemphyschem. 2024 Feb 1;25(3):e202300655. doi: 10.1002/cphc.202300655. Epub 2023 Dec 6.

Abstract

This investigation delves into the UV photodissociation of pivotal amino acids (Alanine, Glycine, Leucine, Proline, and Serine) at 213 nm, providing insights into triplet-state deactivation pathways. Utilizing a comprehensive approach involving time-dependent density functional calculations (TD-DFT), multi-configurational methods, and ab-initio molecular dynamics (AIMD) simulations, we scrutinize the excited electronic states (T1 , T2 , and S1 ) subsequent to 213 nm excitation. Our findings demonstrate that α-carbonyl C-C bond-breaking in triplet states exhibits markedly lower barriers than in singlet states (below 5.0 kcal mol-1 ). AIMD simulations corroborate the potential involvement of triplet states in amino acid fragmentation, underscoring the significance of accounting for these states in photochemistry. Chemical bonding analyses unveil distinctive patterns for S1 and T1 states, with the asymmetric redistribution of electron density characterizing the C-C breaking in triplet states, in contrast to the symmetric breaking observed in singlet states. This research complements recent experimental discoveries, enhancing our comprehension of amino acid reactions in the interstellar medium.

Keywords: C−C breaking; amino acids; photodissociation; photolysis; triplet-state.