Properties of low-fat Cheddar cheese prepared from bovine-camel milk blends: Chemical composition, microstructure, rheology, and volatile compounds

J Dairy Sci. 2024 May;107(5):2706-2720. doi: 10.3168/jds.2023-23795. Epub 2023 Dec 4.

Abstract

Making cheese from camel milk (CM) presents various challenges due to its different physicochemical properties compared with bovine milk (BM). In this study, we investigated the chemical composition, proteolysis, meltability, oiling off, texture profile, color, microstructure, and rheological properties of low-fat Cheddar cheese (LFCC) prepared from BM-CM blends. LFCC was produced from BM or BM supplemented with 15% CM (CM15) and 30% CM (CM30), and analyzed after 14, 60, 120, and 180 d of ripening at 8°C. Except for salt content, no significant differences were observed among LFCC from BM, CM15, and CM30. The addition of CM increased the meltability and oiling off in the resulting cheese throughout storage. With respect to color properties, after melting, LFCC CM30 showed lower L* values than LFCC made from BM and CM15, and a* and b* values were higher than those of BM and CM15 samples. LFCC from CM30 also exhibited lower hardness compared with the other cheeses. Moreover, LFCC made from BM showed a rough granular surface, but cheese samples made from BM-CM blends exhibited a smooth surface. The rheological parameters, including storage modulus, loss modulus, and loss tangent, varied among cheese treatments. The determined acetoin and short-chain volatile acids (C2-C6) in LFCC were affected by the use of CM, because CM15 showed significantly higher amounts than BM and CM30, respectively. The detailed interactions between BM and CM in the cheese matrix should be further investigated.

Keywords: camel milk; low-fat Cheddar cheese; rheological properties; texture; volatile compounds.

MeSH terms

  • Animals
  • Camelus
  • Cheese* / analysis
  • Food Handling / methods
  • Milk* / chemistry
  • Rheology