Metal-injection and interface density engineering induced nickel diselenide with rapid kinetics for high-energy sodium storage

J Colloid Interface Sci. 2024 Mar:657:402-413. doi: 10.1016/j.jcis.2023.12.011. Epub 2023 Dec 2.

Abstract

The key to the innovation of sodium-ion batteries (SIBs) is to find efficient sodium-storage electrode. Here, metal Mo doping of NiSe2 is proposed by modified electrospinning strategy followed by in situ conversion process. The Mo-NiSe2 anchoring on hollow carbon nanofibers (HCNFs) would make full use of the multi-channel HCNFs in the inner layer and the active sites of Mo-NiSe2 in the outer layer, which plays an important role in buffering the volume stress of Na+ (de)insertion and reducing the adsorption energy barrier of Na+. Innovatively, it is proposed to jointly regulate the SIBs performance of NiSe2 by both metal atom doping and interface effects, thereby adjusting the sodium ion adsorption barrier of NiSe2. The Mo-NiSe2@HCNFs exhibits remarkable performance in SIBs, demonstrating a high specific capacity of 396 mAh/g after 100 cycles at 1 A/g. Moreover, it maintains outstanding cycling stability, retaining 77.6 % of its capacity (211 mAh/g) even after 1000 cycles at 10 A/g. This comprehensive electrochemical performances are due to the structural stability and outstanding electronic conductance of the Mo-NiSe2@HCNFs, as evidenced by the diffusion analysis and ex situ charge-discharge process characterization. Furthermore, coupled with the Na3V2(PO4)2O2F cathodes, the full cell also achieves a high energy density of 123 Wh kg-1. The theoretical calculation of the hypervalent Mo doing further proves the benefit of its Na+ adsorption and denser conduction band distribution. This study provides a reference for the construction of transition metal selenide via doping and interface engineering in sodium storage.

Keywords: Conduction band modulation; High-energy density; Metal-injection; Sodium-ion full batteries; Transition metal selenides.