Physical vapor deposition-free scalable high-efficiency electrical contacts to MoS2

Nanotechnology. 2023 Dec 27;35(11). doi: 10.1088/1361-6528/ad12e4.

Abstract

Fermi-level pinning caused by the kinetic damage during metallization has been recognized as one of the major reasons for the non-ideal behavior of electrical contacts, forbidding reaching the Schottky-Mott limit. In this manuscript, we present a scalable technique wherein Indium, a low-work-function metal, is diffused to contact a few-layered MoS2flake. The technique exploits a smooth outflow of Indium over gold electrodes to make edge contacts to pre-transferred MoS2flakes. We compare the performance of three pairs of contacts made onto the same MoS2flake, the bottom-gold, top-gold, and Indium contacts, and find that the Indium contacts are superior to other contacts. The Indium contacts maintain linearI-Vcharacteristics down to cryogenic temperatures with an extracted Schottky barrier height of ∼2.1 meV. First-principle calculations show the induced in-gap states close to the Fermi level, and the damage-free contact interface could be the reason for the nearly Ohmic behavior of the Indium/MoS2interface.

Keywords: MoS2; contact engineering; indium contacts; low Schottky barrier.