Towards Efficient Polymeric Binders for Transition Metal Oxides-based Li-ion Battery Cathodes

Chemistry. 2024 Mar 15;30(16):e202303733. doi: 10.1002/chem.202303733. Epub 2024 Jan 11.

Abstract

Transition metal oxide cathodes (TMOCs) such as LiNi0.8Mn0.1Co0.1O2 and LiMn1.5Ni0.5O4 have been widely employed in Li-ion batteries (LIBs) owing to superior operating voltages, high reversible capacities and relatively low cost. Nevertheless, despite significant advancements in practical application, TMOC-based LIBs face great challenges such as transition metal dissolution and volume expansion during cycling, which jeopardizes the future advance of high-voltage TMOCs. As a critical component of cathode, polymeric binder acts as a crucial part in maintaining the mechanical and ion/electron conductive integrity between active particles, carbon additives, and the aluminum collector, hence minimizing cathode pulverization during battery cycling. Moreover, Polymeric binder with specialized functions is thought to offer a new solution to enhancing the electrochemical stability of the TMOCs. Therefore, this review aims at providing a comprehensive summary of the ideal requirements, design strategies and recent progress of polymeric binders for TMOCs. Future design perspectives and promising research technologies for advanced binders for high-voltage TMOCs are introduced.

Publication types

  • Review