Irreversible Bonding of Polydimethylsiloxane-Lithium Niobate using Oxygen Plasma Modification for Surface Acoustic Wave based Microfluidic Application: Theory and Experiment

Small Methods. 2023 Dec 6:e2301321. doi: 10.1002/smtd.202301321. Online ahead of print.

Abstract

Acoustic microfluidic chips, fabricated by combining lithium niobate (LiNbO3 ) with polydimethylsiloxane (PDMS), practically find applications in biomedicine. However, high-strength direct bonding of LiNbO3 substrate with PDMS microchannel remains a challenge due to the large mismatching of thermal expansion coefficient at the interface and the lack of bonding theory. This paper elaborately reveals the bonding mechanisms of PDMS and LiNbO3 , demonstrating an irreversible bonding method for PDMS-LiNbO3 heterostructures using oxygen plasma modification. An in-situ monitoring strategy by using resonant devices is proposed for oxygen plasma, including quartz crystal microbalance (QCM) covered with PDMS and surface acoustic wave (SAW) fabricated by LiNbO3 . When oxygen plasma exposure occurs, surfaces are cleaned, oxygen ions are implanted, and hydroxyl groups (-OH) are formed. Upon interfaces bonding, the interface will form niobium-oxygen-silicon covalent bonds to realize an irreversible connection. A champion bonding strength is obtained of 1.1 MPa, and the PDMS-LiNbO3 acoustic microfluidic chip excels in leakage tests, withstanding pressures exceeding 60 psi, outperforming many previously reported devices. This work addresses the gap in PDMS-LiNbO3 bonding theory and advances its practical application in the acoustic microfluidic field.

Keywords: DFT calculation; PDMS-LiNbO3 bonding; acoustic microfluidic chip; bonding mechanism; in situ monitor; irreversible bonding.