Bacterial cancer therapy using the attenuated fowl-adapted Salmonella enterica serovar Gallinarum

Mol Ther Oncolytics. 2023 Nov 2:31:100745. doi: 10.1016/j.omto.2023.100745. eCollection 2023 Dec 19.

Abstract

We report here a novel anti-cancer therapy based on an avian-host-specific serotype Salmonella enterica serovar Gallinarum (S. Gallinarum) deficient in ppGpp synthesis. To monitor the tumor targeting, a bioluminescent ΔppGpp S. Gallinarum was constructed and injected intravenously into mice bearing syngeneic and human xenograft tumors. Strong bioluminescent signals were detected specifically in all grafted tumors at 2 days post-injection (dpi). The bacterial counts in normal and tumor tissue at 1 dpi revealed that ΔppGpp S. Gallinarum reached >108 CFU/g in tumor tissue and 106-107 CFU/g in endothelial organs; counts were much lower in other organs. At 16 dpi, ΔppGpp S. Gallinarum counts in tumor tissue decreased to ∼106 CFU/g, while those in the other organs became undetectable. A strong anti-cancer effect was observed after the injection of ΔppGpp S. Gallinarum into BALB/c mice grafted with CT26 colon cancer cells. This could be attributed to reduced virulence, which allowed the administration of at least a 10-fold greater dose (108 CFU) of ΔppGpp S. Gallinarum than other attenuated strains of S. enterica serovar Typhimurium (≤107 CFU). An advantage of the avian-specific S. Gallinarum as a cancer therapeutic should be a reduced capacity to cause infections or harm in humans.

Keywords: Salmonella Gallinarum; anti-cancer effect; mouse model; ppGpp.