A revised model of energy transactions and body composition in sheep

J Anim Sci. 2024 Jan 3:102:skad403. doi: 10.1093/jas/skad403.

Abstract

A mechanistic, dynamic model was developed to calculate body composition in growing lambs by calculating heat production (HP) internally from energy transactions within the body. The model has a fat pool (f) and three protein pools: visceral (v), nonvisceral (m), and wool (w). Heat production is calculated as the sum of fasting heat production, heat of product formation (HrE), and heat associated with feeding (HAF). Fasting heat production is represented as a function of visceral and nonvisceral protein mass. Heat associated with feeding (HAF) is calculated as ((1 - km) x MEI), where km is partial efficiency of ME use for maintenance, and MEI = metabolizable energy intake) applies at all levels above and below maintenance. The value of km derived from data where lambs were fed above maintenance was 0.7. Protein change (dp/dt) is the sum of change in the m, v, and w pools, and change in fat is equal to net energy available for gain minus dp/dt. Heat associated with a change in body composition (HrE) is calculated from the change in protein and fat with estimated partial efficiencies of energy use of 0.4 and 0.7 for protein and fat, respectively. The model allows for individuals to gain protein while losing fat or vice versa. When evaluated with independent data, the model performed better than the current Australian feeding standards (Freer et al., 2007) for predicting protein gain in the empty body but did not perform as well as for gain of fat and fleece-free empty body weight. Models performed similarly for predicting clean wool growth. By explicit representation of the major energy using processes in the body, and through simplification of the way body composition is computed in growing animals, the model is more transparent than current feeding systems while achieving similar performance. An advantage of this approach is that the model has the potential for wider applicability across different growth trajectories and can explicitly account for the effects of systematic changes on energy transactions, such as the effects of selective breeding, growth manipulation, or environmental changes.

Keywords: body composition; growth; metabolism; modeling; nutrition; ruminant.

Plain language summary

Based on prior work by Oltjen et al. (2006), a revised dynamic, mechanistic model was developed to improve the prediction of the composition of protein and fat in the body of growing ruminants. The revised model calculates heat production (HP) internally as a function of fasting HP, heat associated with feeding, and HP from changes in fat and protein within the body. Heat associated with product formation is calculated from changes in body protein and fat, with separate efficiencies for each, while heat associated with feeding is a constant proportion of metabolizable energy intake and applies at all levels of feeding above and below maintenance. When evaluated against novel data, the revised model performed similarly to current Australian feeding standards (Freer et al., 2007) Unlike the Freer model, the revised model captures variation in HP arising from feed as well as gain of protein and fat. The revised model explicitly represents protein in the body as two pools with markedly different rates of energy expenditure, improving representation of the underlying biology compared to current feeding systems. This provides a more flexible way to predict energy requirements and body composition in growing animals while achieving similar performance to current feeding systems.

MeSH terms

  • Animal Feed / analysis
  • Animals
  • Australia
  • Body Composition
  • Body Weight
  • Diet / veterinary
  • Energy Intake*
  • Energy Metabolism*
  • Humans
  • Proteins / metabolism
  • Sheep
  • Sheep, Domestic

Substances

  • Proteins