Organocatalytic Lithium Chloride Oxidation by Covalent Organic Frameworks for Rechargeable Lithium-Chlorine Batteries

Angew Chem Int Ed Engl. 2024 Feb 12;63(7):e202315931. doi: 10.1002/anie.202315931. Epub 2023 Dec 18.

Abstract

Rechargeable Li-Cl2 battery is a promising high energy density battery system. However, reasonable cycle life could only be achieved under low specific capacities due to the sluggish oxidation of LiCl to Cl2 . Herein, we propose an amine-functionalized covalent organic framework (COF) with catalytic activity, namely COF-NH2 , that significantly decreases the oxidation barrier of LiCl and accelerates the oxidation kinetics of LiCl in Li-Cl2 cell. The resulting Li-Cl2 cell using COF-NH2 (Li-Cl2 @COF-NH2 ) simultaneously exhibits low overpotential, ultrahigh discharge capacity up to 3500 mAh/g and a promoted utilization ratio of deposited LiCl at the first cycle (UR-LiCl) of 81.4 %, which is one of the highest reported values to date. Furthermore, the Li-Cl2 @COF-NH2 cell could be stably cycled for over 200 cycles when operating at a capacity of 2000 mAh/g at -20 °C with a Coulombic efficiency (CE) of ≈100 % and a discharge plateau of 3.5 V. Our superior Li-Cl2 batteries enabled by organocatalyst enlighten an arena towards high-energy storage applications.

Keywords: Covalent Organic Framework; High Energy Density; Lithium Chloride Oxidation; Lithium-Chlorine Battery; Organocatalysis.