Transcriptome and histological analyses on the uterus of freckle egg laying hens

BMC Genomics. 2023 Dec 5;24(1):738. doi: 10.1186/s12864-023-09828-x.

Abstract

Background: In this study, we explored the characteristics and causes of freckle formation. We collected 15 normal and freckled eggs each for eggshell index testing and hypothesized that the structure and function of the uterus would have a direct effect on freckled egg production given that eggshells are formed in the uterus. To test this hypothesis, we collected uterine tissue from laying hens (418 days of age) that laid normal (Group C, n = 13) and freckled (Group T, n = 16) eggs for 7 consecutive days.

Results: When we examined the eggshell quality, we found that the L value was significantly lower (P < 0.05) in the freckled site group of freckled eggs compared to the normal egg group during the detection of blunt pole, equator, and sharp pole of the eggshell color. The a-values of the three positions were significantly higher (P < 0.05) in the freckled site group of freckled eggs, and the a-values of the blunt pole were significantly lower (P < 0.05) in the background site group of freckled eggs, compared to the normal egg group. The b-values were significantly higher (P < 0.05) at three locations in the freckled site group of freckled eggs compared to the normal egg group. During the detection of eggshell thickness, the blunt pole was significantly higher (P < 0.05) in the freckled egg site group of freckled eggs compared to the normal egg group, and there was no significant difference between the other groups (P > 0.05). There was no significant difference (P > 0.05) between the transverse and longitudinal diameters of the eggs in each group.We then performed histopathology and transcriptome analyses on the collected tissue. When compared with group C, uterine junctional epithelial cells in group T showed significant defects and cilia loss, and epithelial tissue was poorly intact. From transcriptomics, genes that met (|log2FC|) ≥ 1 and P < 0.05 criteria were screened as differentially expressed genes (DEGs). We identified a total of 136 DEGs, with 101 up- and 35 down-regulated genes from our RNA-seq data. DEGs identified by enrichment analyses, which were potentially associated with freckled egg production were: IFI6, CCL19, AvBD10, AvBD11, S100A12, POMC, and UCN3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that pathways were associated with immunoreaction and stress stimulation, e.g., complement activation, interleukin-1 cell reactions, viral responses, cell reactions stimulated by corticotropin releasing hormone, steroid hormone mediated signaling pathways, staphylococcal infections, B cell receptor signaling pathways, and natural killer cell mediated cytotoxicity.

Conclusions: From these data, freckled areas deepen freckled eggshell color, but background areas are not affected. At the same time,we reasoned that freckle eggs may result from abnormal immune responses and impaired uterine functions induced by stress. Therefore, the uterus of laying hens in a state of stress and abnormal immune function can cause the appearance of freckled eggs.

Keywords: Freckle eggs; Immunoreaction; Stress response; Transcriptome; Uterus.

MeSH terms

  • Animals
  • Chickens* / genetics
  • Egg Shell / metabolism
  • Eggs / analysis
  • Female
  • Gene Expression Profiling
  • Transcriptome*
  • Uterus / metabolism