Protective effects of niacin following high fat rich diet: an in-vivo and in-silico study

Sci Rep. 2023 Dec 1;13(1):21343. doi: 10.1038/s41598-023-48566-8.

Abstract

Niacin had long been understood as an antioxidant. There were reports that high fat diet (HFD) may cause psychological and physical impairments. The present study was aimed to experience the effect of Niacin on % growth rate, cumulative food intake, motor activity and anxiety profile, redox status, 5-HT metabolism and brain histopathology in rats. Rats were administered with Niacin at a dose of 50 mg/ml/kg body weight for 4 weeks following normal diet (ND) and HFD. Behavioral tests were performed after 4 weeks. Animals were sacrificed to collect brain samples. Biochemical, neurochemical and histopathological studies were performed. HFD increased food intake and body weight. The exploratory activity was reduced and anxiety like behavior was observed in HFD treated animals. Activity of antioxidant enzymes was decreased while oxidative stress marker and serotonin metabolism in the brain of rat were increased in HFD treated animals than ND fed rats. Morphology of the brain was also altered by HFD administration. Conversely, Niacin treated animals decreased food intake and % growth rate, increased exploratory activity, produced anxiolytic effects, decreased oxidative stress and increased antioxidant enzyme and 5-HT levels following HFD. Morphology of brain is also normalized by the treatment of Niacin following HFD. In-silico studies showed that Niacin has a potential binding affinity with degradative enzyme of 5-HT i.e. monoamine oxidase (MAO) A and B with an energy of ~ - 4.5 and - 5.0 kcal/mol respectively. In conclusion, the present study showed that Niacin enhanced motor activity, produced anxiolytic effect, and reduced oxidative stress, appetite, growth rate, increased antioxidant enzymes and normalized serotonin system and brain morphology following HFD intake. In-silico studies suggested that increase 5-HT was associated with the binding of MAO with Niacin subsequentially an inhibition of the degradation of monoamine. It is suggested that Niacin has a great antioxidant potential and could be a good therapy for the treatment of HFD induced obesity.

MeSH terms

  • Animals
  • Antioxidants / pharmacology
  • Body Weight
  • Diet, High-Fat* / adverse effects
  • Monoamine Oxidase
  • Niacin* / pharmacology
  • Rats
  • Serotonin

Substances

  • Antioxidants
  • Serotonin
  • Niacin
  • Monoamine Oxidase