Tuning the Electronic Properties of Two-Dimensional Lepidocrocite Titanium Dioxide-Based Heterojunctions

ACS Omega. 2023 Nov 16;8(47):45056-45064. doi: 10.1021/acsomega.3c06786. eCollection 2023 Nov 28.

Abstract

Two-dimensional (2D) heterostructures reveal novel physicochemical phenomena at different length scales that are highly desirable for technological applications. We present a comprehensive density functional theory study of van der Waals (vdW) heterostructures constructed by stacking 2D TiO2 and 2D MoSSe monolayers to form the TiO2-MoSSe heterojunction. The heterostructure formation is found to be exothermic, indicating stability. We find that by varying the atomic species at the interfaces, the electronic structure can be considerably altered due to the differences in charge transfer arising from the inherent electronegativity of the atoms. We demonstrate that the heterostructures possess a type II or type III band alignment, depending on the atomic termination of MoSSe at the interface. The observed charge transfer occurs from MoSSe to TiO2. Our results suggest that the Janus interface enables the tuning of electronic properties, providing an understanding of the possible applications of the TiO2-MoSSe heterostructure.