A Foundation Model for Cell Segmentation

bioRxiv [Preprint]. 2024 Mar 7:2023.11.17.567630. doi: 10.1101/2023.11.17.567630.

Abstract

Cells are a fundamental unit of biological organization, and identifying them in imaging data - cell segmentation - is a critical task for various cellular imaging experiments. While deep learning methods have led to substantial progress on this problem, most models in use are specialist models that work well for specific domains. Methods that have learned the general notion of "what is a cell" and can identify them across different domains of cellular imaging data have proven elusive. In this work, we present CellSAM, a foundation model for cell segmentation that generalizes across diverse cellular imaging data. CellSAM builds on top of the Segment Anything Model (SAM) by developing a prompt engineering approach for mask generation. We train an object detector, CellFinder, to automatically detect cells and prompt SAM to generate segmentations. We show that this approach allows a single model to achieve human-level performance for segmenting images of mammalian cells (in tissues and cell culture), yeast, and bacteria collected across various imaging modalities. We show that CellSAM has strong zero-shot performance and can be improved with a few examples via few-shot learning. We also show that CellSAM can unify bioimaging analysis workflows such as spatial transcriptomics and cell tracking. A deployed version of CellSAM is available at https://cellsam.deepcell.org/.

Keywords: cell segmentation; deep learning; foundation model; object detection.

Publication types

  • Preprint