Cu-In Dual Sites with Sulfur Defects Toward Superior Ethanol Electrosynthesis from CO2 Electrolysis

Adv Mater. 2023 Dec 4:e2310822. doi: 10.1002/adma.202310822. Online ahead of print.

Abstract

The electrosynthesis of multi-carbon chemicals from excess CO2 is an area of great interest for research and commercial applications. However, improving both the yield of CO2 -to-ethanol conversion and the stability of the catalyst at the same time is proving to be a challenging issue. Here we propose to stabilize active Cu(I) and In dual sites with sulfur defects through an electro-driven intercalation strategy, which leads to the delocalization of electron density that enhances orbital hybridizations between the Cu-C and In-H bonds. Hence, the energy barrier for the rate-limiting *CHO formation step is reduced toward the key *OCHCHO* formation during ethanol production, which is also facilitated by the combined Cu site enabling C-C coupling and In site with a higher oxygen affinity based on both thermodynamic and kinetic calculations. Accordingly, such dual-site catalyst achieves a high partial current density toward ethanol of 409 ± 15 mA/cm2 for over 120 hours. Furthermore, a scaled-up flow cell is assembled with an industrial-relevant current of 5.7 A for over 36 hours, in which the carbon loss is less than 2.5% and single-pass carbon efficiency is around 19%. This article is protected by copyright. All rights reserved.

Keywords: CO2RR; electrocatalyst; electron density; electrosynthesis; reaction kinetics.