Modulating the Structure and Composition of Single-Atom Electrocatalysts for CO2 reduction

Adv Sci (Weinh). 2024 Mar;11(9):e2304424. doi: 10.1002/advs.202304424. Epub 2023 Dec 3.

Abstract

Electrochemical CO2 reduction reaction (eCO2 RR) is a promising strategy to achieve carbon cycling by converting CO2 into value-added products under mild reaction conditions. Recently, single-atom catalysts (SACs) have shown enormous potential in eCO2 RR due to their high utilization of metal atoms and flexible coordination structures. In this work, the recent progress in SACs for eCO2 RR is outlined, with detailed discussions on the interaction between active sites and CO2 , especially the adsorption/activation behavior of CO2 and the effects of the electronic structure of SACs on eCO2 RR. Three perspectives form the starting point: 1) Important factors of SACs for eCO2 RR; 2) Typical SACs for eCO2 RR; 3) eCO2 RR toward valuable products. First, how different modification strategies can change the electronic structure of SACs to improve catalytic performance is discussed; Second, SACs with diverse supports and how supports assist active sites to undergo catalytic reaction are introduced; Finally, according to various valuable products from eCO2 RR, the reaction mechanism and measures which can be taken to improve the selectivity of eCO2 RR are discussed. Hopefully, this work can provide a comprehensive understanding of SACs for eCO2 RR and spark innovative design and modification ideas to develop highly efficient SACs for CO2 conversion to various valuable fuels/chemicals.

Keywords: coordination environment; electrochemical CO2 reductions; electronic structures; product selectivity; single-atom catalysts; support effects.

Publication types

  • Review